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Abstract
A Hamiltonian formulation for elasticity and thermoelasticity is proposed and
its relation with the corresponding configurational setting is examined. Firstly,
a variational principle, concerning the ‘inverse motion’ mapping, is formulated
and the corresponding Euler–Lagrange equations are explored. Next, this
Lagrangian formulation is used to define the Hamiltonian density function. The
equations of Hamilton are derived in a form which is very similar to the one
of the corresponding equations in particle mechanics (finite-dimensional case).
From the Hamiltonian formulation it follows that the canonical momentum is
identified with the pseudomomentum. Furthermore, a meaning for the Poisson
bracket is defined and the entailed relations with the canonical variables as well
as the balance laws are examined.

PACS numbers: 42.50.Jj, 46.05.+b, 46.15.Cc, 46.25.H+

1. Introduction

In a recent paper (Maugin and Kalpakides 2002) we explored the thermoelasticity of Green and
Naghdi (1993) in the framework of configurational mechanics,using a Lagrangian formulation.
According to this work, the two main concepts of configurational mechanics, the Eshelby stress
tensor and the pseudomomentum, are inserted into the picture through invariant arguments
for the Lagrangian. In earlier works (Maugin 1993), it was remarked that the equations in
the configurational setting could be derived directly from the Lagrangian. This is intimately
related to some kind of Hamiltonian structure of elasticity. The object of this paper is to
study this relation for the thermoelasticity of Green and Naghdi, which admits a Lagrangian
formulation.

1 Permanent address: Department of Mathematics, Division of Applied Mathematics and Mechanics, University of
Ioannina, GR-45110, Ioannina, Greece.
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The main point in this approach is that the Lagrangian as well as the Hamiltonian density
function should be defined on the current configuration instead of the reference configuration,
which is used in Lagrangian formulations in nonlinear mechanics of solids.

According to the proposed Hamiltonian structure, it is proved that one of the Hamilton
equations is the pseudomomentum equation. Note that in the case of particle mechanics (finite-
dimensional case), the corresponding Hamilton equation provides the momentum equation.
This result justifies the term ‘canonical momentum’, proposed by Maugin (1993), for the
‘pseudomomentum’ density function.

Furthermore, having obtained a Hamiltonian structure, the concept of Poisson bracket
and its relation with the conservation (or non-conservation) laws are studied.

Generally, if not otherwise denoted, all indices will range from 1 to 3. Two distinct
differential operators, ∂/∂XL and d/dXL, are used; the former is the usual partial derivative
operator while the latter denotes the partial derivative which accounts for the underlying
function composition. For instance,

d

dXL

F(XB, xi(XB)) = ∂F

∂XL

+
∂F

∂xi

∂xi

∂XL

.

Also,

d

dxi

�(xj ,XL(xj )) = ∂�

∂xi

+
∂�

∂XL

∂XL

∂xi

.

Besides, the usual notation Grad F = ∇F = dF/dXL, Div F = dFL/dXL and Ḟ = DF/Dt

for gradient, divergence and material time derivative, respectively, are used. The gradient and
the divergence operator for a function f (or a scalar function f ) defined on x will be denoted
by grad f = df/dxi and div f = dfi/dxi , respectively.

2. Preliminary results

The motion of a thermoelastic body is described by the smooth mappings

x = χ(X, t) α = α(X, t) (2.1)

where α = α(X, t) is the thermal displacement field, X is the material space variable and x is
the spatial position of the particle X at time t. In a coordinate system, these variables will be
written as XL,L = 1, 2, 3, and xi, i = 1, 2, 3, respectively. The temperature field is defined
to be the time derivative of α, thus

θ(X, t) := ∂

∂t
α(X, t).

Next, we give some very fundamental notions and results of the Green and Naghdi
thermoelasticity (Green and Naghdi 1993). The field equations, i.e. the momentum and
energy equations, are given, respectively, as follows:

∂(ρv)

∂t
− Div T = 0 (2.2)

−
(

D�

Dt
+

Dθ

Dt
η

)
+ tr(TḞ) − S · ∇θ = 0 (2.3)

where ρ is the mass density in the reference configuration, v = ∂x
∂t

is the velocity field, � is
the free energy function per unit undeformed volume, T is the first Piola–Kirchhoff stress, F
is the deformation gradient, S is the entropy flux vector and η is the entropy density per unit
undeformed volume.
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The constitutive equations are of the form

T = ∂�

∂F
S = −∂�

∂β
η = −∂�

∂α̇
� = �(X, F,β, α̇) (2.4)

where β = ∇α. It is worth noting that the Green and Naghdi theory is an alternative
formulation of what is called hyperbolic thermoelasticity in which thermal disturbances
propagate with finite wave speed. That is why it does admit a variational formulation (Maugin
and Kalpakides 2002). Nevertheless, the interesting point of this formulation is that the
classical dissipative thermoelasticity can be provided, by a proper choice of constitutive
assumptions, as well. Consequently, one could generalize the proposed Hamiltonian
formulation to cover dissipative thermoelasticity too.

It seems that the natural setting for the Hamiltonian formulation of elasticity is the current
configuration Bt , i.e. the space of placements (we denote by Br the reference configuration).
Hence, in this work all quantities are defined in this space. This, in turn, leads us to use the
inverse motion mapping X = X (x, t) instead of the motion mapping x = χ(X, t), which
hereafter will be called the direct motion mapping. One can easily show that the following
relation between the variables in reference and current configuration holds,

∂xi

∂t
= − ∂xi

∂XL

∂XL

∂t
or v = −(∇χ)V (2.5)

where V is the ‘velocity’ of the inverse motion.
Now, we would like to draw the attention of the reader to the differential operator with

respect to t. Apart from the usual material derivative, we will need an additional differential
operator with respect to t, while we consider the inverse motion mapping. In that case, note
that xi and t make up the space of independent variables, thus, the partial time differentiation
is carrying out for fixed x. Consequently, we define the time differentiation operator d/dt on
any function f (X, t) by the following meaning:

df

dt
= ∂f

∂t
+

∂f

∂X
· ∂X

∂t
. (2.6)

Certainly, for a function φ defined directly on x and t (φ = φ(x, t)) this operator provides the
simple partial differentiation, i.e.

dφ

dt
= ∂φ

∂t
. (2.7)

Furthermore, one can prove the following formulae concerning the differentiation of
JF , Grad χ and gradX ,

∂xi,K

∂XL,j

= −xi,Lxj,K

∂XK,i

∂xj,L

= −XL,iXK,j

∂JF

∂xi,L

= JF XL,i

∂JF

∂XL,i

= −JFxi,L

(2.8)

where JF is the determinant of F. Note that JF−1 = J −1
F .

Also, the following relation2 can be proved:

dJF−1

dt
= JF−1 Div V. (2.9)

Using equation (2.6) and the identity (Maugin 1993)

d

dXL

(JF XL,i) ≡ 0

2 Note the similarity with the relation DJF
Dt

= JF div v which can be found in any standard text in continuum
mechanics.
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we can obtain the following relation that is useful in forthcoming calculations (Podio-Guidugli
2001),

div L = JF
−1 Div (LJF (F−1)T )

or in index notation
dLij

dxj

= JF
−1 d

dXM

(LijJF XM,j ) (2.10)

where Lij is any spatial Cartesian tensor.
All quantities involved in our problem, will appear both as functions of X, t (material

configuration) or of x, t (current configuration). The thermal displacement function in the
current configuration will be denoted as ᾱ(x, t). It is related to the corresponding quantity in
reference configuration, i.e. equation (2.1)2, through the relations

α = ᾱ ◦ χ ᾱ = α ◦ X
where ◦ denotes the composition between functions. Therefore, their derivatives will fulfil the
following relations:

∂α

∂XL

= ∂ᾱ

∂xi

xi,L

∂α

∂t
= ∂ᾱ

∂t
− ∂ᾱ

∂xi

xi,A

∂XA

∂t
. (2.11)

The free energy function in the reference configuration and in the current configuration,
respectively, will be of the form

� = �(X, Grad χ, Grad α, α̇) �̄ = �̄(X (x, t), gradX , grad ᾱ, ˙̄α). (2.12)

The two functions are linked through the relation

�̄ = JF
−1� ◦ X . (2.13)

3. The Lagrangian formulation

We start with the following definition of the Lagrange density function:

Definition. The Lagrangian function of a thermoelastic body, defined in the current
configuration, has the following form,




(
XL,

∂XL

∂t
,
∂ᾱ

∂t
,
∂XL

∂xi

,
∂ᾱ

∂xi

)
= K̄ − �̄

= JF
−1 1

2
�̄(xi)

∂XK

∂t
CKL

∂XL

∂t
− �̄

(
XL,

∂XL

∂xi

,
∂ᾱ

∂xi

,
∂ᾱ

∂t

)
(3.1)

where ρ̄ is the mass density in the current configuration. Note that K̄ is nothing else but the
kinetic energy function defined in the current configuration, i.e. K̄ = JF

−1K◦X , consequently,
according to the above definition we have


 = JF
−1L ◦ X

where L denotes the Lagrangian density function defined per unit volume in the reference
configuration.

Consider now a time interval [t1, t2], then the corresponding action functional will be of
the form

L[X , ᾱ] =
∫ t2

t1

∫
Bt


 dx dt . (3.2)
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Note the relation with the standard energy functional used in solid mechanics:∫ t2

t1

∫
Bt


 dx dt =
∫ t2

t1

∫
Br

JF
−1L dX dt .

Furthermore we assume boundary and initial conditions of the following form,

XL(xi, t) = fL(xi, t) for all xi ∈ ∂Bt and for all t ∈ [t1, t2] (3.3)

XL(xi, t1) = f 1
L(xi) for all xi ∈ Bt1 XL(xi, t2) = f 2

L(xi) for all xi ∈ Bt2 (3.4)

and

ᾱ(xi, t) = g(xi, t) for all xi ∈ ∂Bt and for all t ∈ [t1, t2] (3.5)

ᾱ(xi, t1) = g1(xi) for all xi ∈ Bt1 ᾱ(xi, t2) = g2(xi) for all xi ∈ Bt2 (3.6)

where fL, f 1
L, f 2

L, g, g1 and g2 are given functions. Then, requiring an extremum for the
functional L, we obtain the Euler–Lagrange equations:

∂


∂XL

− d

dxi

(
∂


∂XL,i

)
− d

dt

(
∂


∂XL,t

)
= 0 (3.7)

∂


∂ᾱ
− d

dxi

(
∂


∂ᾱ,i

)
− d

dt

(
∂


∂ᾱ,t

)
= 0 (3.8)

for all x in Br and for all t in the interval [t1, t2].
The boundary conditions (3.3) and (3.5) correspond to what are usually called essential

boundary conditions (i.e. XL and ᾱ are prescribed on the boundary ∂Bt ). Using the standard
procedure of the calculus of variations, one can obtain the Euler–Lagrange equations (3.7) and
(3.8) for the case of natural boundary conditions as well.

Using relations (2.14) and (2.4) we carry out the following calculations for the
determination of the intermediate terms of equations (3.7) and (3.8):

∂�̄

∂XL,i

= ∂JF
−1

∂XL,i

� + JF
−1


 ∂�

∂xj,A

∂xj,A

∂XL,i

+
∂�

∂
(

∂α
∂XA

) ∂
(

∂α
∂XA

)
∂XL,i

+
∂�

∂
(
∂α
∂t

) ∂
(
∂α
∂t

)
∂XL,i




= JF
−1xi,L� + JF

−1

[
−TAjxj,Lxi,A + SA

∂ᾱ

∂xj

xj,Lxi,A − η
∂ᾱ

∂xj

xj,Lxi,A

]

= JF
−1xi,L� − JF

−1

[
TAjxj,Lxi,A − SAβLxi,A + ηβL

∂xi

∂t

]
. (3.9)

Similarly, we obtain

∂�̄

∂
(
∂XL

∂t

) = JF
−1ηβL (3.10)

∂K̄

∂XL,i

= JF
−1xi,LK − JF

−1ρxj,L

∂xj

∂t

∂xi

∂t
(3.11)

∂K̄

∂
(
∂XL

∂t

) = −JF
−1ρ

∂xi

∂t
xi,L. (3.12)

Consequently, the partial derivatives of the Lagrangian 
 are given as follows:

∂


∂XL,i

= ∂K̄

∂XL,i

− ∂�̄

∂XL,i

= JF
−1

[
xi,A(δAL(K − �) + TAjxj,L − SAβL) − ∂xi

∂t

(
ρ

∂xj

∂t
xj,L − ηβL

)]
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or
∂


∂XL,i

= JF
−1

(
xi,AbAL +

∂xi

∂t
PL

)
(3.13)

where

bAL = −(LδAL + TAjxj,L − SAβL) (3.14)

PL = −
(

ρ
∂xj

∂t
xj,L + ηβL

)
(3.15)

are the Eshelby stress tensor and pseudomomentum or canonical momentum, respectively.
Similarly, the partial derivative of 
 with respect to the variable ∂XL

∂t
is

∂


∂
(
∂XL

∂t

) = −JF
−1

(
ρ

∂xi

∂t
xi,L − ηβL

)
= JF

−1PL. (3.16)

What remains is to differentiate expressions (3.13) and (3.16) with respect to xi and t. We
start differentiating with respect to xi with the aid of equation (2.10):

d

dxi

(
∂


∂XL,i

)
= d

dxi

[
JF

−1

(
−xi,AbAL +

∂xi

∂t
PL

)]

= 1

JF

d

dXM

[
JF

−1

(
−xi,AbAL +

∂xi

∂t
PL

)
JF XM,i

]

= −JF
−1 d

dXM

(bML + VMPL). (3.17)

Next, we proceed to the differentiation with respect to t:

d

dt

(
∂


∂
(
∂XL

∂t

)
)

= dJF
−1

dt
PL + JF

−1 dPL

dt
.

Evoking now equations (2.6) and (2.9), we obtain

d

dt

(
∂


∂
(
∂XL

∂t

)
)

= JF
−1

(
dVM

dXM

)
PL + JF

−1

(
∂PL

∂t
+

∂PL

∂XM

∂XM

∂t

)

= JF
−1

(
d

dXM

(PLVM) +
∂PL

∂t

)
. (3.18)

Note that, as PL was defined by equation (3.15), it is a function of X and t, thus
∂PL/∂XL = dPL/dXL.

Finally, we calculate the first term of the Euler–Lagrange equation (3.7):

∂


∂XL

= ∂

∂XL

(JF
−1L) = JF

−1 ∂L

∂XL

. (3.19)

Thus, equation (3.7) takes on the form

JF
−1

[
∂L

∂XL

+
d

dXM

(bML + VMPL) − d

dXM

(PLVM) − ∂PL

∂t

]
= 0

or
∂L

∂XL

+
dbML

dXM

− ∂PL

∂t
= 0. (3.20)

Equation (3.20) is the pseudomomentum equation for thermoelasticity (see Maugin and
Kalpakides (2002)). The interesting point here lies in the way the equation has been obtained;
it is proved that the Euler–Lagrange equations for the inverse motion mapping leads directly
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to the equation of material momentum. Let us proceed to the second of the Euler–Lagrange
equations, i.e. equation (3.8), calculating one by one all of its terms,

∂�̄

∂
(

∂ᾱ
∂xi

) = JF
−1


 ∂�

∂
(

∂α
∂XL

) ∂
(

∂α
∂XL

)
∂

(
∂ᾱ
∂xi

) +
∂�

∂
(
∂α
∂t

) ∂
(
∂α
∂t

)
∂

(
∂ᾱ
∂xi

)



= JF
−1

(
−SLxi,L + ηxi,L

∂XL

∂t

)
= JF

−1

(
−SLxi,L − η

∂xi

∂t

)
(3.21)

∂�̄

∂
(
∂ᾱ
∂t

) = JF
−1 ∂�

∂
(
∂α
∂t

) ∂
(
∂α
∂t

)
∂

(
∂ᾱ
∂t

) = JF
−1η. (3.22)

Hence, we easily obtain with the aid of equations (2.9) and (2.11)

d

dxi


 ∂


∂
(

∂ᾱ
∂xi

)

 = d

dxi

[
JF

−1

(
−SLxi,L − η

∂xi

∂t

)]
= JF

−1 d

dXM

(SM − ηVM) (3.23)

d

dt

(
∂�̄

∂
(
∂ᾱ
∂t

)
)

= d

dt
(JF

−1η) = JF
−1 dVM

dXM

η + JF
−1 dη

dt
. (3.24)

Inserting equations (3.23) and (3.24) into equation (3.8), we finally obtain

dSM

dXM

+
dη

dt
= 0 (3.25)

which is nothing else but the entropy equation (Green and Naghdi 1993, Maugin and
Kalpakides 2002). It should be mentioned that equations (3.20) and (3.25) are not only
of theoretical importance. It has been proved (Dascalu and Maugin 1995) that these equations
can provide path-domain independent expression for the thermoelastic energy-release rate
which is of practical importance in thermoelastic fracture problems.

Remark. It is easily understood that the above analysis covers completely the case of elasticity
as well. In this case, it is enough to remark that the Lagrangian function has fewer arguments
and it is of the form




(
XL,

∂XL

∂t
,XL,i

)
= JF

−1 1

2
�̄(xi)

∂XK

∂t
CKL

∂XL

∂t
− �̄(XL,XL,i). (3.26)

Also, one takes only one Euler–Lagrange equation in the same form as equation (3.20), but
with reduced definitions for Eshelby stress tensor bML and pseudomomentum PL given now
by the equations

bAL = −(LδAL + TAjxj,L) PL = −ρ
∂xj

∂t
xj,L. (3.27)

This result is in accordance with Maugin (1993), where the original idea of a Lagrangian
formulation of a pseudomomentum equation, using the inverse motion, appears for the first
time.
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4. The Hamiltonian formulation

In this section, we will show that equations (3.20) and (3.25) admit a Hamiltonian formulation,
hence it is justified to call them canonical equations (Maugin 1993). In accordance with the
Hamiltonian mechanics (Goldstein 1950, Rund 1966), we define as canonical momenta the
quantities

πL = ∂


∂
(
∂XL

∂t

) η̄ = ∂


∂
(
∂ᾱ
∂t

) . (4.1)

Note that πL and η̄ are defined on Bt ; they are related to the pseudomomentum and entropy
functions through the relations

πL = JF
−1PL ◦ X η̄ = JF

−1η ◦ X .

To fix ideas, firstly we are confined in the framework of elasticity.

4.1. The Hamilton equations for elasticity

We start giving a definition for the Hamiltonian function:

Definition. The Hamiltonian function of an elastic body is defined to be

H(XL, πL) = πL

∂XL

∂t
− 


(
XL,

∂XL

∂t
,
∂XL

∂xi

)
. (4.2)

Furthermore, we must define the variational derivative for our problem. To this end, let us
consider the mapping H defined by the following relation:

H[XL, πL] :=
∫

�

H(XL, πL) dx

where � is any regular subset of Bt . It is important to note that H is a mapping which has
for domain the space of all smooth functions XL and PL (defined on Bt × [t1, t2]) and fulfil
some boundary conditions on the boundary ∂Bt . The range of H is in the space of all smooth
functions on [t1, t2]. Let us assume that H is a Fréchet differentiable mapping with respect to
its arguments XL and PL. Also, let δXL be any admissible variation of the inverse motion
mapping XL.

Denoting

HX(ε) = H[XL + εδXL, πL] for any sufficiently small real ε,

the Fréchet differential of H with respect to XL will be3

δH[XL,PL; δXL] = lim
ε→0

HX(ε) − HX(o)

ε
(4.3)

where the limit on the rhs is in the sense of sup-convergence4, i.e. uniformly in [t1, t2].
Under these assumptions, we can calculate δH as follows:

δH[XL, πL; δXL] = d

dε

[∫
�

H(XL + εδXL, πL) dx

]
ε=0

=
∫

�

[
∂H

∂XL

δXL +
∂H

∂XL,t

(δXL),t +
∂H

∂XL,i

(δXL),i

]
dx

=
∫

�

[
− ∂H

∂XL

δXL +

(
− ∂


∂XL,t

+ πL

)
(δXL),t − ∂H

∂XL,i

(δXL),i

]
dx

for all t in [t1, t2].
3 More accurately, this is the weak differential of H in the direction of X.
4 Keep in mind that HX(ε) is a smooth function (at least C1) of t.
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Evoking now definition (4.1)1 we can write

δH[XL, πL; δXL] =
∫

�

[
∂H

∂XL

δXL +
∂H

∂XL,i

(δXL),i

]
dx +

∫
∂�

∂H

∂XL,i

δXLνi dx (4.4)

where νi is the unit normal vector on ∂�.

Remark. In the case where the domain of integration is the whole body Bt , the form of
equation (4.4) depends on the boundary data. Assuming essential boundary conditions on
∂Bt , that is

XL(xi, t) is prescribed on ∂Bt , for all t in [t1.t2] (4.5)

all the variations δXL will vanish on ∂Bt , thus equation (4.4) takes the form

δH[XL, πL; δXL] ==
∫

Bt

[
∂H

∂XL

− d

dxi

(
∂H

∂XL,i

)]
δXL dx. (4.6)

In the case of natural boundary conditions, we have boundary data of the form

∂H

∂XL,i

νi = FL on ∂Bt , for all t in [t1.t2]

where FL is a kind of material force on the boundary.
Then the Hamiltonian mapping H will take the form

H[XL, πL] :=
∫

∂Bt

H (XL, πL) dx −
∫

∂Bt

FLXL dx

and its Fréchet differential with respect to XL will be5

δH[XL, πL; δXL] =
∫

∂Bt

[
∂H

∂XL

δXL +
∂H

∂XL,i

(δXL),i

]
dx +

∫
∂Bt

[
∂H

∂XL,i

νi − FL

]
δXL dx

=
∫

∂Bt

[
∂H

∂XL

δXL +
∂H

∂XL,i

(δXL),i

]
dx.

Consequently, for any case of boundary conditions the Fréchet differential keeps the same
form6.

Next, we define as the variational derivative of H with respect to XL

δH

δXL

= ∂H

∂XL

− d

dxi

(
∂H

∂XL,i

)
∀t ∈ [t1, t2]. (4.7)

Thus, equation (4.4) can be written as

δH[XL, πL; δXL] =
∫

�

δH

δXL

δXL +
∫

∂�

∂H

∂XL,i

δXLνi dx.

Similarly, the Fréchet differential of H with respect to πL will be given by the following
relation:

δH[XL, πL; δπL] = d

dε

[∫
�

H(XL, πL + εδπL) dx

]
ε=0

=
∫

�

∂H

∂πL

δπL dx =
∫

�

δH

δπL

δπL dx. (4.8)

5 Supposing that FL is a ‘dead’ material force to secure that it is not affected by the variations of XL.
6 One can easily prove the same result for the mixed type boundary conditions, as well.
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Thus, the corresponding variational derivative with respect to πL was defined as
δH

δπL

= ∂H

∂πL

∀t ∈ [t1, t2]. (4.9)

Generally, in virtue of equations (4.7) and (4.9) we can use the operators δ/δXL and δ/δπL

for any smooth function f = f (XL,XL,i , πL) as follows:

δf

δXL

= ∂f

∂XL

− d

dxi

(
∂f

∂XL,i

)
δf

δπL

= ∂f

∂πL

. (4.10)

Now, one can easily prove that the following relations hold:
δπL

δXM

= 0
δπL

δπM

= δLM

δXL

δXM

= δLM. (4.11)

Concluding, we can state that the Hamilton equations for elasticity are given by the equations
dπL

dt
= − δH

δXL

dXL

dt
= δH

δπL

∀t ∈ [t1, t2]. (4.12)

Using the definition of the variational derivative we can easily prove that the first of the
Hamilton equations is nothing other than the pseudomomentum equation for elasticity. Indeed,
with the aid of definition (4.1), the lhs of equation (4.12)1 can be written as

dπL

dt
= d

d

(
∂


∂XL,t

)
.

On the other hand, the rhs of equation (4.12)1 by virtue of equations (4.7) and (4.2) is written
as

− δH

δXL

= ∂


∂XL

− d

dxi

(
∂


∂XL,i

)
.

Hence, equation (4.12)1 is identified with equation (3.7) which we have already proved
provides the pseudomomentum equation for elasticity (see the remark at the end of section 3).
The second of the Hamilton equations, i.e. equation (4.12)2, is a simple consequence of
definition7 (4.2).

4.2. The Hamilton equations for thermoelasticity:

Following a similar line of development we define the Hamiltonian function for
thermoelasticity:

Definition. The Hamiltonian function of a thermoelastic body is defined to be of the form

H(XL, ᾱ, πL, η̄) = πL

∂XL

∂t
+ η̄

∂ᾱ

∂t
− 


(
XL,

∂XL

∂t
,
∂ᾱ

∂t
,
∂XL

∂xi

,
∂ᾱ

∂xi

)
. (4.13)

Note that now we have an additional canonical momentum and an additional generalized
coordinate given by η̄ and ᾱ, respectively. Also, although ᾱ appears in the argument of H, the
latter depends on the derivatives of ᾱ. Furthermore, the mapping H takes the form

H[XL, ᾱ, πL, η̄] :=
∫

�

H(XL, ᾱ, πL, η̄) dx.

Following the same line of arguments, the variational derivatives of H are given as

δH

δXL

= ∂H

∂XL

− d

dxi

(
∂H

∂XL,i

)
= − ∂


∂XL

+
d

dxi

(
∂


∂XL,i

)
(4.14)

7 Note that according to definition (2.6), ∂XL
∂t

= dXL
dt

.
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δH

δᾱ
= − d

dxi

(
∂H

∂ᾱ,i

)
= d

dxi

(
∂L

∂ᾱ,i

)
(4.15)

and
δH

δπL

= ∂H

∂πL

= ∂XL

∂t

δH

δη̄
= ∂H

∂η̄
= ∂ᾱ

∂t
for all t in [t1, t2]. (4.16)

Also, we generally denote

δ

δᾱ
= − d

dxi

(
∂

∂ᾱ,i

)
and

δ

δη̄
= ∂

∂η̄
.

Finally, we conclude that the Hamilton equations for thermoelasticity are given by the
equations

dπL

dt
= − δH

δXL

dη̄

dt
= −δH

δᾱ

dXL

dt
= δH

δπL

dᾱ

dt
= δH

δη̄
∀t ∈ [t1, t2].

(4.17)

The last two of equations (4.17) are a simple rewriting of equations (4.16). It is interesting to
focus on the first two of the Hamilton equations (4.17). Using equations (4.14), one can prove
that equations (4.17)1,2 provide the pseudomomentum equation for thermoelasticity (3.20)
and the entropy equation (3.25).

The first of equations (4.17) gives

dπL

dt
= −

[
∂H

∂XL

− d

dxi

(
∂H

∂XL,i

)]
⇒ ∂


∂XL

− d

dxi

(
∂


∂XL,i

)
− d

dt

(
∂


∂XL,t

)
= 0

(4.18)

which is the equation of pseudomomentum (see equations (3.7) and (3.20)). The second one
provides the entropy equation

dη̄

dt
=

[
d

dxi

(
∂H

∂ᾱ,i

)]
⇒ d

dxi

(
∂


∂ᾱ,i

)
+

d

dt

(
∂


∂ᾱ,t

)
= 0. (4.19)

4.3. The case of classical thermoelasticity

We remark that what we have obtained up to this point concerns dissipation-less
thermoelasticity (see the constitutive variables in relation (2.4)4). We now use the previous
analysis to explore the classical thermoelasticity. In this case, the free-energy function will be
of the form

� = �

(
XL, xi,L,

∂α

∂t

)
�̄ = �̄

(
XL,XL,i ,

∂ᾱ

∂t
,

∂ᾱ

∂xi

)
.

Note that the spatial derivative of ᾱ automatically appears in the argument of �̄ due to relation
(2.12). We now examine the Hamilton equation (4.17)1:

dπL

dt
= −

[
∂H

∂XL

− d

dxi

(
∂H

∂XL,i

)]
⇒ ∂


∂XL

− d

dxi

(
∂


∂XL,i

)
− d

dt

(
∂


∂XL,t

)
= 0.

At first sight, the above equation looks similar to equation (4.18), but we have to keep in mind
that, for the case under study, the argument of � is different. We calculate again every term
in the above equation:

∂


∂XL,i

= ∂K̄

∂XL,i

− ∂�̄

∂XL,i

= JF
−1

(
−xi,Mbmech

ML +
∂xi

∂t
PL

)
(4.20)
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∂


∂
(
∂XL

∂t

) = ∂K̄

∂
(
∂XL

∂t

) − ∂�̄

∂
(
∂XL

∂t

) = JF
−1PL (4.21)

where

bmech
ML = −(δMLL + TMjxj,L).

Inserting now equations (4.20) and (4.21) into equation (4.18), we obtain

−dbmech
ML

dXM

+
∂P mech

L

∂t
= ∂L

∂XL

+ η
∂θ

∂XL

(4.22)

where

P mech
L = −ρ

∂xi

∂t
xi,L = PL − ηβL.

Equation (4.22) is the pseudomomentum equation for classical thermoelasticity, also obtained
in Dascalu and Maugin (1995) following a completely different procedure.

To sum up we have formulated a Hamilton formulation for thermoelasticity given by
equations (4.17). Also, we have proved that this formulation, when the constitutive relations
(2.14) are adopted, provides the pseudomomentum equation and the entropy balance equation
of the thermoelasticity of Green and Naghdi. Furthermore, the same formulation provides the
pseudomomentum equation of classical thermoelasticity.

5. Poisson brackets and balance laws

We furthermore proceed to the concept of Poisson brackets in the framework of the proposed
Hamiltonian structure. We will examine simultaneously elasticity and thermoelasticity,
considering the indices A,B to run from 1 to 4 under the following convention:

XA = (X1,X2,X3, ᾱ) πA = (π1, π2, π3, η̄).

Thus, we can write for any function f defined on the phase space

F[XL, ᾱ, πL, η̄] = F[XA, πA] =
∫

�

f (XA, πA) dx L = 1, 2, 3 A = 1, 2, 3, 4

where � is any regular subset of Bt .
Let f and g be two functions defined in the phase space (the space of canonical momenta

πL, η̄ and positions XL, ᾱ). The Poisson brackets are defined to be8

{f, g} =
∫

�

[
δf

δXA

δg

δπA

− δg

δXA

δf

δπA

]
dx. (5.1)

Using definition (5.1) and equations (4.11), one can easily prove the following standard
relations for a Hamiltonian structure:

{f,XA} = −
∫

�

δf

δπA

dx {f, πA} = −
∫

�

δf

δXA

dx A,B = 1, 2, 3, 4.

Furthermore, one can note that the Poisson brackets define a differentiation with respect to
time. Indeed, if the Hamilton equations

dπA

dt
= − δH

δXA

dXA

dt
= δH

δPA

(5.2)

hold and f is a function on the phase space, then we can write

dF
dt

= {f,H } t ∈ [t1, t2]. (5.3)

8 This definition has been proposed for elasticity by Maugin (1993).
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The right part of equation (5.3) can be written in virtue of equations (5.2),

{f,H } =
∫

�

[
δf

δXA

δH

δπA

− δH

δXA

δf

δπA

]
dx

=
∫

�

[
∂f

∂XA

dXA

dt
+

dπA

dt

∂f

∂πA

]
dx

=
∫

�

[
∂f

∂XA

∂XA

∂t
+

∂f

∂πA

∂πA

∂t

]
dx.

In other words, the Poisson brackets define a differentiation in the phase space along the orbit
described by the Hamilton equations.

It is more interesting to examine equation (5.3) setting the canonical momentum πA and
the Hamiltonian H at the position of f ; namely if the Hamilton equations hold, we can write

dPA

dt
= {πA,H } dH

dt
= {H,H } t ∈ [t1, t2] (5.4)

where

PA =
∫

�

πA(xi, t) dx H =
∫

�

H(xi, t) dx. (5.5)

Let us explore the latter formulation. Starting with equation (5.4)2, we immediately show that

dH
dt

= d

dt

∫
�

H(xi, t) dx = 0 (5.6)

which expresses the conservation of energy.
As concerns equation (5.4)1, we write for its right side

{πA,H } =
∫

�

[
δπA

δXB

δH

δπB

− δH

δXB

δπA

δπB

]
dx =

∫
�

− δH

δXA

dx

=
∫

�

−
[

∂H

∂XA

− d

dxi

(
∂H

∂XA,i

)]
dx

=
∫

�

− ∂H

∂XA

dx +
∫

∂�

∂H

∂XA,i

νi dx

=
∫

�

∂


∂XA

dx −
∫

∂�

∂


∂XA,i

νi dx.

Hence, equation (5.4)1 is written in the form

dPA

dt
= d

dt

∫
�

πA(xi, t) dx =
∫

�

∂


∂XA

dx −
∫

∂�

∂


∂XA,i

νi dx. (5.7)

Equation (5.7) can be separated into two equations; the first for the values of the index A from
1 to 3 and the second for the value 4. So, we obtain

d

dt

∫
�

πL(xi, t) dx =
∫

�

∂


∂XL

dx −
∫

∂�

∂


∂XL,i

νi dx L = 1, 2, 3 (5.8)

and
d

dt

∫
�

π4(xi, t) dx =
∫

�

∂


∂X4
dx −

∫
∂�

∂


∂X4,i

νi dx

⇒ d

dt

∫
�

η̄(xi, t) dx =
∫

�

∂


∂ᾱ
dx −

∫
∂�

∂


∂ᾱ,i

νi dx =
∫

∂�

∂�̄

∂ᾱ,i

νi dx

⇒ d

dt

∫
�

η̄(xi, t) dx =
∫

∂�

∂�̄

∂ᾱ,i

νi dx. (5.9)



10788 G A Maugin and V K Kalpakides

Following Maugin (1993), we can view equation (5.8) as a balance law for the total
pseudomomentum. On the left side we have the rate of pseudomomentum of the body,
while on the right side we have the sources of pseudomomentum due to the inhomogeneities
(the first term on the rhs) and the flow of pseudomomentum through the boundary of the body
∂�. Thus, the total pseudomomentum is conserved if and only if the body is homogeneous
and there is no flux across ∂�.

Equation (5.9) represents the balance of entropy. If the right-hand term, which describes
the flux of entropy, vanishes the total entropy of the body is conserved. Thus, no
internal entropy sources appear, a result in accordance with the theory of dissipation-less
thermoelasticity of Green and Naghdi upon which we based the present analysis.
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